
Laboratory of Data Science Project

Authors: Craciun Vali, Fabbri Lucia
Course: Decision Support Systems (Module II)
Master’s Degree: Data Science & Business Informatics

Indice

Introduction 1

Part I - Datawarehouse creation 2
0.1 Assignment 1 . 2
0.2 Assignment 2 . 3

Part II - ETL Process 4

Part III - Data Cube 6

Part IV - MDXQuery 8

Part V - Dashboards 10

1

Introduction

The report’s purpose is to provide a concise explanation of how we solved each of the 6 assigned tasks.
Our main data sources were the files computer sales.csv and geography.csv. The first contains the primary
dataset, presenting a comprehensive table of computer sales spanning fromMarch 2013 to April 2018. Each
entry not only details the sales transactions but also provides specifications regarding each PC’s CPU, GPU,
and RAM configurations. The second one instead enriches the dataset with supplementary information
concerning the geographical locations corresponding to each sale. The geography information can be
linked to the main fact table with their primary keys.

In figure 1 we can see the datawharehouse schema of reference, which will be used as a guide to solve
the very first part of the project, as explained in the next section.

Figura 1: Datawarehouse schema of reference

1

Part I - Datawarehouse creation

0.1 Assignment 1

As outlined in the guidelines, our initial objective was to create all the necessary tables, starting from the
provided datasets, namely computer sales.csv and geography.csv. To achieve this, we developed a Python
script containing several utility functions. Wewill not dive into the specifics of how each function operates,
as the primary approach follows the typical pattern:

with (
open(inputfile, ’r’) as input,
open(outputfile, ’w’) as output

):
reader = ...;
writer= ...;
for row in reader:

modifiedRow = doSomething(row)
writer.writerow(modifiedRow)

What we’ll do instead is to explain the main rationale behind their functioning, highlighting how special
fields have been obtained.

• make geo(cs1.csv, geography.csv, geo attributes, output.csv): Crea-
tes the geography table. The main task of this function is to add the currency attribute to the already
existing geography.csv file. This is achieved by looping over the rows of computer sales.csv and
build a geo id-currency mapping, used later as lookup table for retrieving the right currency, given
a geo id.

• make time(cs.csv, time attributes, output.csv): Creates the time table. He-
re we retrieve all the unique time codes from computer sales.csv and process them using
get time(time code), as explained below.

– get time(time code): Retrieves all necessary information from each time code. Since
each time code was formatted as ”yyyymmdd”, we could slice this string to extract the year,
month, and day. From this information, we derived the attributes day, day of week, week,
month, quarter and year.

• make fact(cs.csv,[dim.csv], fact attributes, output.csv): Creates the
fact table, i.e.,computer sales. This function leverages the previous crafted dimensions treating

1abbreviation of computer sales.csv

2

them as lookup tables to retrieve the corresponding ids (foreign keys). So, for each row in compu-
ter sales.csv, we split the row according to the various attributes of each dimension and look for the
corresponding id of each split row for each dimension. We then write on the output file only the id
as foreign key for each dimension. For what concerns the measures, all the … sales fields were al-
ready present in the original file, while the… sales usd fields were missing. To retrieve these values,
we utilized the currencyconverter library2. This process is executed in the make fact()
function, where, during the iteration over each row of the input file, we convert the current amount
into USD, specifying the date of the sale to obtain the correct exchange rate. The converted amount
is then written to the output file.

• make dim(cs.csv, dim attributes, output.csv): Used to create the gpu, cpu,
and ram tables, as minimal reprocessing was involved, making the creation process more gene-
ralizable.

0.2 Assignment 2

In the followingAssignment 2, we have been asked towrite a second python file that populates the database
according to the starting schema in Figure 1.

A step behind this, was the creation of the database schema still referring to Figure 1, using the tool
SQL Server Management Studio. We started this process by first constructing the dimensions table, i.e.
Time, Geography, Cpu, Gpu, Ram, with all the different attributes that characterize each table and setting
the primary key for each of them. In general, we used type int mainly for primary keys but also for some
numeric attributes, varchar(50) for the alphanumeric and string attributes and float for all those attribute
that didn’t have an integer value.

Because of a relationship constraints, the last table we created was the fact table Computer Sales.
In here, we established that the primary key values would be created automatically by system at any
upload/update of the table.

After the creation of all the table, we improved the connectivity of the database schema by setting all
the relationship needed to create the foreign key, connecting the fact table with all the dimension tables.

Once the database environment was ready, we loaded all the data prepared in Assignment 1 and we
started populating our tables through a Python program: we created a customized function,as follows

dataloadCSV(filepath, tablename, connectionstring)

that was able to establish a database connection using the proper connection string, read data from a given
CSV file into file path, constructs a dynamic parameterized SQL query:

placeholders = ’, ’.join([’?’ for in header])
sqlquery = f”INSERT INTO –tablename (–’, ’.join(header))
VALUES (–placeholders)”

and uses cursor.executemany(sql query, data) command for efficient bulk insertion into
the specific table table name, avoiding to upload data row by row. After inserting the data, it commits the
changes.

This process was automatically done for each CSV, and for his reason a try-except block was added in
order to better handle possible errors during the whole process.

2https://pypi.org/project/CurrencyConverter/

3

Part II - ETL Process

In the second part of this work, we are going to develop and ETL workflow using Visual Studio and the
SSIS extension, aiming to answer to the following query: For each year and region, identify the computer
IDs associated with the highest sales of CPUs. Augment the result by including the percentage of sales w.r.t. to
the total sales of all computers within the same CPU series.

The first step was to create the connection to the database in order to extract time id and year from
the dimension table Time, geo id and region from the dimension Geography and cpu sales, cpu id, gpu id,
ram id, time id, geo id from the fact table ComputerSales. As a second step, we performed amerge between
Time and ComputerSales on the key time id and another merge between Geography and the output table
of the first merge on the key geo id.

Once we got all the attributes needed to perform our query, we started aggregating attributes grouping
on year, region, cpu id, gpu id, ram id together with a sum on cpu sales as total cpu sales.

After these operations, we used a multicast in order to create two different tables on two different flow:
on the first table, we performed another aggregation grouping on cpu id and summing on total cpu sales
to obtain total sales cpu per cat. We then merged using as key cpu id this output table with the outgoing
flow from the multicast, on which we didn’t perform any operation. The operation described so far are
shown in the following Figure 2:

Figura 2: SSIS Data Flow - Part I

At this point, we have all the attribute in order to compute the main interesting part of the query, such

4

as the ranking in order to find the highest sales of CPUs and the ratio w.r.t to the total sales of all computer
with the same CPU. Using a multicast, we divided the workflow into two different part: on one side, we
first create the derived column ratio dividing the total sales cpu
total sales cpu per cat, multiplying the result per 100 to normalize it. On the other side, we performed an
aggregation grouping on year, region and summing up total sales cpu in order to retrieve the maximum
from the table created in the previous grouping operation as max total sales cpu. We then performed a
merge using as a key year, region, combining the output table of the two flows of the multicast. As last
operation, we extracted all the rows matching the conditional split total sales cpu == max total sales cpu.
The second part of the workflow is shown in the Figure 3 as follows:

Figura 3: SSIS Data Flow - Part II

5

Part III - Data Cube (SSAS)

For the creation of the multidimensional cube, we first established the connection with the previously defi-
ned database and set up the data views to ensure everything was working correctly. As a preliminary step,
we added some useful attributes such as weekday, int representation of day of week, andmonth of year,
literal representation of month.

After that, we started creating the dimensions, namelyGeography, Time, Cpu, Gpu, Ram.
Regarding hierarchies, the Ram andGpu dimensions were kept flat, while for the others, we identified some
multilevel hierarchies:

• Geography: The hierarchy here is of type Region → Country → Continent.

• Time: The hierarchy here is of typeDayOfWeek→Week→MonthOfYear →Quarter → Year. Addi-
tionally, we established functional dependencies of type DayOfWeek →Weekday andMonthOfYear
→ Month to sort the literal attributes based on their numerical order, as expressed by their int
representation.

• Cpu: The hierarchies here are of types CpuSeries → CpuBrand and CpuName → CpuSeries.

After creating the hierarchies, we selected computer sales as the fact table and chose the… sales
and … sales usd fields as measures, with ”sum” as the aggregation function. We also included a count for
each sale.

Finally, we deployed the cube to the corresponding server using the HTTP protocol, with the final
schema looking as in figure 4

6

Figura 4: Data view from Visual Studio

7

Part IV - MDXQuery

The goal was to show the top 5 cpu, ram, and gpu brands w.r.t the monthly average sales for each region
in Europe. To better answer this question, we decided to split the report into 3 smaller ones, providing a
more concise representation. The approach used is identical for all three categories, with minor changes
for cpu to account for the smaller numerosity of the available brands.

For what regards Gpu, the first thing was to define a new member, namely Average Monthly Sales,
which we used as the main measure to sort our brands by. This new measure was computed by means of
the predefined AVG() function, passing the set of months and the Total Sales as numeric expression. Note
that we used MonthOfYear from the hierarchy, such that we could average on each month of each year,
instead of the aggregation of months.

We then proceeded to compute the main result of the report, called Top5GpuBrandsPerRegion. This
was done by means of the GENERATE() function. We passed all the regions to the function to loop on
and in the TOPCOUNT() function specified the tuples to consider for each region (Gpu brand in our case
with the current Region), set the count to 5 and the previously defined Average Monthly Sales as sorting
expression.

As a last step, we selected the resulting tuples on the ROWS with the measure on the COLUMNS,
formatted as currency. Of course we also specified in WHERE clause that we’re interested only in the
European regions. The query and results for Gpu are shown in figure 5 and figure 6

Figura 5: MDX query for Gpu Figura 6: Results for Gpu

The same reasoning was followed for Ram as well, as shown in figure 7 and figure 8
In the case of Cpu, we set TOPCOUNT() to 1 since only 2 brands are available, making the original

report useless as most of values would be null. Figure 9 and 10 for reference.

8

Figura 7: MDX query for Ram Figura 8: Results for Ram

Figura 9: MDX query for Cpu Figura 10: Results for Cpu

9

Part V - Dashboards

In the final part of our project, i.e. Assignment 6, we have been asked to create a plot/dashboard of our
choice that we deem interesting w.r.t. the data available in our cube. We completed this task using PowerBI
and establishing a connection to the cube we created in the previous steps. The following figures aim to
point out some interesting aspects and insight from our data.

First, we decided to use a filled map to represent computer sales count and total sales at different gra-
nularities, following the hierarchy of continent, country, and region. This allows us to visualize the geogra-
phical distribution of sales. For clearer and more accessible data presentation, we also created a stacked bar
chart. This chart shows the countries within each continent, with the size of each bar proportional to the
sales volume. As shown in Figure 11, in America and Oceania, sales are mainly split between the United
States, Canada, and Australia, New Zealand, respectively. In contrast, Germany dominates the sales scene
in Europe.

Figura 11: Computer Sales and Total Sales by Continent, Country and Region

Another interesting aspect is shown in Figure 12, which displays the annual sales of CPUs, GPUs, and
RAM using box plots. Additionally, a line graph illustrates the overall trend of total sales over the years.
From this plot, we can see that CPU sales are generally much higher than RAM sales. Notably, 2017 was
the most profitable year, with a nearly linear growth trend leading up to it. However, in 2018, there was a
significant drop, with sales for all components halving compared to the previous year.

As a final analysis, we decided to use the pie charts in Figure 13 to show the total number of computers
sold, categorized by their CPU, GPU, and RAM brands. This helped us see which brands were most popular
in the market. The chart clearly showed that INTEL was the top choice for CPUs. For GPUs, PNY and
GigaByte, and for RAM, GSKILL and KINGSTONE were the leading brands. Other brands also had a
significant presence in the market, but these were the most prominent ones. This visualization gave us a
good understanding of consumer preferences for different computer component brands, helping us identify
the most popular choices.

10

Figura 12: Cpu Sales, Ram Sales, Gpu Sales and Total Sales by Year

Figura 13: Computer Sales Count by Cpu Brand, Gpu Brand and Ram Brand

11

	Introduction
	Part I - Datawarehouse creation
	Assignment 1
	Assignment 2

	Part II - ETL Process
	Part III - Data Cube
	Part IV - MDX Query
	Part V - Dashboards

